Acta Cryst. (1996). C52, 2396-2399

Derivatives of Bis(diphenylphosphino)difluoromethane: the Disulfide Ph₂P(=S)CF₂P(=S)Ph₂ and the Bis[chlorogold(I)] Complex Ph₂P(AuCl)CF₂P(AuCl)Ph₂

PETER G. JONES AND EBERHARD BEMBENEK

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: p.jones@tu-bs.de

(Received 19 March 1996; accepted 1 April 1996)

Abstract

The title compound diffuoromethylenebis(diphenylphosphine) disulfide, $C_{25}H_{20}F_2P_2S_2$, displays an S1— P1···P2—S2 torsion angle of -90.76 (5)°. The P—CF₂ bond lengths of 1.893 (2) and 1.893 (3) Å are appreciably lengthened in comparison with systems involving the non-fluorinated analogue diphenylphosphinomethane. In the title complex μ -[diffuoromethylenebis(diphenylphosphine)-P,P']-bis[chlorogold(I)], [Au₂Cl₂-(C₂₅H₂₀F₂P₂)], the Au—P···P—Au torsion angle is 31.2 (1)° and a short intramolecular Au···Au contact of 3.1432 (8) Å is observed.

Comment

Bis(diphenylphosphino)methane (dppm), $Ph_2PCH_2PPh_2$, is a routinely used bidentate phosphine ligand. Its difluoromethane analogue bis(diphenylphosphino)difluoromethane, $Ph_2PCF_2PPh_2$, has however, to the best of our knowledge, not been used as a ligand. We present here the structures of two derivatives of bis(diphenylphosphino)difluoromethane, namely, the disulfide $Ph_2P(=S)CF_2P(=S)Ph_2$, (1), and the bis[chlorogold(I)] complex $Ph_2P(AuCl)CF_2P(AuCl)Ph_2$, (2).

$$\begin{array}{cccc} S & S & AuCl & AuCl \\ \mu & \mu \\ Ph_2P - CF_2 - PPh_2 & Ph_2P - CF_2 - PPh_2 \\ (1) & (2) \end{array}$$

The conformation of compound (1) about the $P \cdots P$ vector is described by the torsion angle S1—P1 \cdots P2— S2 of -90.76 (5)°; the substituents of the P1—C1 and P2—C1 bonds are staggered (Fig. 1). The structure of dppm disulfide has not been determined; dppm diselenide displays a similar conformation to that of (1) [torsion angle 95.4 (1)°; Carroll & Titus, 1977], although the two compounds are not isostructural,

whereas dppm dioxide shows a fundamentally different conformation, with O—P···P—O torsion angles of 178 and -170° in two independent molecules (Antipin, Struchkov, Pisareva, Medved & Kabachnik, 1980).

Fig. 1. A view of the molecule of compound (1) with ellipsoids corresponding to 50% probability levels. H-atom radii are arbitrary.

The P=S bond lengths in compound (1) of 1.9352 (13) and 1.9319 (11) Å are, as in Ph₂P(=S)-CF₂Br [1.9348 (11) Å; Jones, 1996], slightly shorter than the 'standard' value of 1.954 Å (Allen *et al.*, 1987). The P-CF₂ bond lengths of 1.893 (2) and 1.893 (3) Å are lengthened with respect to those of the non-halogenated systems; dppm [1.848 (5) and 1.868 (5) Å; Schmidbaur, Reber, Schier, Wagner & Müller, 1988], dppm dioxide [1.814 (8), 1.814 (7), 1.833 (7) and 1.816 (7) Å; Antipin *et al.*, 1980] and dppm diselenide [1.833 (10) and 1.853 (11) Å; Carroll & Titus, 1977]. The lengthened P-CF₂ bond [1.884 (3) Å] in Ph₂P(=S)CF₂Br (Jones, 1996) implies that this effect may be general for P-C(halide) systems.

The bond angles at phosphorus show the expected trends; those involving sulfur are larger [maximum 115.23 (10)° for C31—P2—S2] because of the extra interelectronic repulsion from the P=S double bond, whereas the smallest angles involving sulfur are those involving the more electronegative CF_2 group.

The P—C—P angle is widened to 116.89 (13) from 106.2 (3)° in dppm (Schmidbaur *et al.*, 1988), compared with values of 119.5 (4) and 121.3 (4)° in dppm dioxide (Antipin *et al.*, 1980), and 117.9 (6)° in dppm diselenide (Carroll & Titus, 1977).

The structure of the gold complex μ -[difluoromethylenebis(diphenylphosphine)-P, P']-bis[chlorogold(I)], (2) is shown in Fig. 2. Its most striking feature is the short intramolecular Au···Au contact of 3.1432 (8) Å. Such contacts are common in gold(I) chemistry and represent weak attractive interactions between the formally nonbonding d^{10} metal atoms (see *e.g.* Jones, 1986); the tendency of gold(I) centres to aggregate has been termed 'aurophilicity' by Schmidbaur (1990).

Fig. 2. A view of the molecule of compound (2) with ellipsoids corresponding to 50% probability levels. H-atom radii are arbitrary.

The Au. Au contact distance of 3.351 (2) Å in the corresponding non-fluorinated complex (dppm)(AuCl)₂ (Schmidbaur, Wohlleben, Wagner, Orama & Huttner, 1977), which crystallizes with twofold symmetry, is appreciably longer than that in (2). Consistent with this observation, the Au— $P \cdots P$ —Au torsion angle in (2) is smaller: 31.2(1) cf. 67.5° in (dppm)(AuCl)₂. In $(dppm)(AuC_6F_5)_2$ (Jones & Thöne, 1992), an essentially cis conformation is observed (Au-P···P-Au 0.8°), with an Au. Au distance of 3.163(1) Å, but a relaxation of the Au-P-C angles to 113.8 and 115.1 (4)° [cf. 107.3 and 109.5 (3) in (2)] prevents the Au \cdots Au contact from becoming shorter still.

The Au-P and Au-Cl bond lengths in (2) are normal and the deviation from linearity at gold is ca 5° (Table 4). The P—CF₂ bonds are long [1.893 and 1.900(10)Å], consistent with the observations noted above; the P—C—P angle is $113.2(5)^{\circ}$ [cf. 1.78(2) Å and $116(1)^{\circ}$ in (dppm)(AuCl)₂].

Neither compound displays any unusually short intermolecular contacts.

Experimental

Compound (1) was obtained from Ph₂PCF₂PPh₂ and $P(=S)Cl_3$, while compound (2) was obtained from Ph_2PCF_2 -PPh₂ and (tht)AuCl (tht is tetrahydrothiophene). Both were recrystallized from dichloromethane/diethyl ether (Ruhnau, 1992).

Compound (1)

Crystal data	
$C_{25}H_{20}F_2P_2S_2$	Mo $K\alpha$ radiation
$M_r = 484.47$	$\lambda = 0.71073 \text{ \AA}$

Triclinic
D1
r i
$a = 9.519(3) A_{1}$
b = 11.446 (4) Å
c = 11.650 (4) Å
$\alpha = 108.67 (3)^{\circ}$
$\beta = 104.86 (3)^{\circ}$
$\gamma = 94.68 (3)^{\circ}$
$V = 1143.6(7) \text{ Å}^3$
Z = 2
$D_x = 1.407 \text{ Mg m}^{-3}$
D_m not measured

Data collection

Siemens R3 diffractometer ω scans Absorption correction: none 5225 measured reflections 4041 independent reflections 3093 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.0209$

Refinement

PI P2

SI

S2 FI

F2

Cl CII C12 C13

C14 C15

C16

C21

C22

C23 C24

C25 C26

C31 C32 C33 C34 C35

Refinement on F^2	$\Delta \rho_{\rm max} = 0$
R(F) = 0.0383	$\Delta \rho_{\min} = -$
$vR(F^2) = 0.1050$	Extinction
S = 1.021	SHELX
038 reflections	1993)
281 parameters	Extinctior
I atoms riding	0.0047
$v = 1/[\sigma^2(F_{\rho}^2) + (0.0532P)^2]$	Atomic so
+ 0.4407 <i>P</i>]	from In
where $P = (F_{0}^{2} + 2F_{c}^{2})/3$	for Cry
Δ/σ) _{max} < 0.001	Vol. C,
, ,	6114

Cell parameters from 50 reflections $\theta = 10 - 11.5^{\circ}$ $\mu = 0.400 \text{ mm}^{-1}$ T = 178 (2) KPrism $0.88 \times 0.60 \times 0.50$ mm Colourless

 $\theta_{\rm max} = 25.05^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -13 \rightarrow 13$ 3 standard reflections monitored every 147 reflections intensity decay: 3.5%

$\Delta \rho_{\rm max} = 0.282 \ {\rm e \ A}$
$\Delta \rho_{\rm min} = -0.284 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick,
1993)
Extinction coefficient:
0.0047 (15)
Atomic scattering factors
from International Tables
for Crystallography (1992
Vol. C, Tables 4.2.6.8 and
6.1.1.4)

? _ 3

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (1)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$					
x	у	z	U_{eq}		
0.72888 (7)	0.20127 (6)	0.43075 (6)	0.03212 (17)		
0.62214 (7)	0.32679 (6)	0.21890 (6)	0.03414(18)		
0.55388 (7)	0.07266 (6)	0.34478 (7)	0.0456 (2)		
0.73387 (9)	0.22322 (7)	0.12384 (7)	0.0522 (2)		
0.81697(17)	0.43775 (12)	0.44772 (14)	0.0475 (4)		
0.59118 (17)	0.39359 (14)	0.45317 (13)	0.0470 (4)		
0.6917 (3)	0.3468 (2)	0.3928(2)	0.0362 (5)		
0.8952 (3)	0.1581 (2)	0.3938(2)	0.0332 (5)		
0.8974 (3)	0.0310(2)	0.3506(3)	0.0473 (7)		
1.0212 (4)	-0.0122 (3)	0.3235 (3)	0.0605 (8)		
1.1414 (3)	0.0700 (3)	0.3391 (3)	0.0572 (8)		
1.1417 (3)	0.1964 (3)	0.3832(3)	0.0565 (8)		
1.0196(3)	0.2422 (3)	0.4111 (3)	0.0497 (7)		
0.7765 (3)	0.2589 (2)	0.6033 (2)	0.0358 (5)		
0.6902(3)	0.2048 (2)	0.6579(3)	0.0446 (6)		
0.7282 (3)	0.2380(3)	0.7890(3)	0.0533 (7)		
0.8511(3)	0.3254 (3)	0.8644 (3)	0.0537 (8)		
0.9382 (3)	0.3818(3)	0.8115(3)	0.0568 (8)		
0.9023 (3)	0.3481 (3)	0.6807 (3)	0.0482 (7)		
0.4246 (3)	0.2697 (2)	0.1655 (2)	0.0366 (6)		
0.3263 (3)	0.3451 (3)	0.2056 (3)	0.0443 (6)		
0.1753 (3)	0.3018(3)	0.1536 (3)	0.0561 (8)		
0.1225 (3)	0.1853 (3)	0.0610(3)	0.0595 (8)		
0.2176 (4)	0.1107 (3)	0.0204 (3)	0.0588 (8)		

$C_{25}H_{20}F_2P_2S_2$ AND $[Au_2Cl_2(C_{25}H_{20}F_2P_2)]$

C36 C41 C42 C43 C44 C45	0.3697 (3) 0.6422 (3) 0.6272 (3) 0.6364 (4) 0.6578 (3) 0.6732 (3)	0.1517 (2) 0.4865 (2) 0.5898 (2) 0.7068 (3) 0.7202 (3) 0.6196 (3)	 0.0723 (3) 0.2200 (2) 0.3160 (3) 0.3029 (3) 0.1956 (3) 0.1017 (3) 	0.0470 (7) 0.0378 (6) 0.0523 (7) 0.0614 (8) 0.0611 (9) 0.0553 (8)	Table	3. Fraction isotropic disp Uea	al atomic placement placement place	coordinates an parameters (Å ² G _J U _{ij} a [*] _i a [*] _j a _i .a _j .	d equivalent) for (2)
C46	0.6663 (3)	0.5027 (3)	0.1133 (3)	0.0451 (6)	Aul	0.43218 (3)	y 0.31964 (3) 0.83491 (3)	0.02645 (10)
Table	e 2. Selecte	d geometrie	c parameters (Å,	°) for (1)	Au2 Pi	0.27217 (3)	0.26527 ($\begin{array}{ccc} 3) & 0.67377(3) \\ 0.7077(2) \end{array}$	0.02627 (10)
P1-C11		1.811 (2)	P2C41	1.818 (3)	P2	0.3946 (2)	0.2380 (2	0.5643 (2)	0.0248 (6)
P1C21 P1C1		1.821 (3)	P2—C1 P2—S2	1.893 (3)	CII	0.3519 (2)	0.2602 (2	0.9702 (2)	0.0328 (6)
P1—S1		1.9352 (13)	F1-C1	1.376 (3)	CI2 CI	0.5252 (8)	0.2987 (2	0.6176(7)	0.0290 (0)
P2-C31		1.814 (3)	F2—C1	1.373 (3)	F1	0.5574 (4)	0.1876 (4	0.6666 (5)	0.0322 (13)
C11—P1-		105.78 (11)	C31 - P2 - S2 C41 - P2 - S2	115.23 (10)	F2 C11	0.3964 (3)	0.2857 (4 0.4723 (8	0.5491(5) 0.6370(7)	0.0322 (15)
C21—P1-		102.35 (11)	C1—P2—S2	110.50 (8)	C12	0.3759 (7)	0.5141 (7	0.6685 (8)	0.026 (2)
C11—P1-	S1	115.25 (9)	F2—C1—F1	105.5 (2)	C13 C14	0.3323 (9)	0.5892 (8	0.6157(9) 0.5312(8)	0.033(2) 0.031(2)
C21—P1-		114.52 (9)	F2-C1-P2 F1-C1-P2	109.8 (2)	C15	0.4705 (9)	0.5786 (8	0.5006 (9)	0.036 (2)
C31P2-	C41	105.25 (11)	F2-C1-P1	106.1 (2)	C16	0.5134 (9)	0.5030 (8	0.5542 (8)	0.031 (2)
C31—P2- C41—P2-		107.51 (11)	F1C1P1 P2C1P1	110.1 (2)	C21 C22	0.6935 (9)	0.4003 (7	0.7294(7) 0.7153(7)	0.026 (2)
C41 12	01	105.75 (11)		110.07 (15)	C23	0.7953 (8)	0.5141 (9	0.7345 (8)	0.033 (2)
Compo	und (2)				C24 C25	0.8585 (9) 0.8207 (9)	0.4404 (7) 0.7679(8)) 0.7842(9)	0.034 (2) 0.040 (3)
Crystal	data				C26	0.7189 (9)	0.3286 (8	0.7649 (8)	0.033 (2)
[Au ₂ Cl ₂	$(C_{25}H_{20}F_2P)$	2)]	Mo $K\alpha$ radiation	L	C31	0.4096 (8)	0.1138 (8	0.5249(7)	0.030 (2)
$M_r = 88$	85.18	-/3	$\lambda = 0.71073 \text{ Å}$		C32	0.5081 (10)	-0.0198 (9) 0.4591 (9)	0.040 (3)
Orthorh	ombic		Cell parameters	from 50	C34	0.4248 (9)	-0.0810 (9) 0.4704 (8)	0.041 (3)
$P2_12_12_1$	•		reflections		C35 C36	0.3339(11) 0.3271(9)	-0.0467 (8	0.5086(9) 0.5347(8)	0.043(3) 0.032(2)
a = 12.9	998 (4) A		$\theta = 10 - 11.4^{\circ}$	-1	C41	0.3814 (8)	0.3162 (8) 0.4599 (8)	0.031 (2)
b = 13.	/19 (3) A 873 (3) Å		$\mu = 12.221 \text{ mm}$ T = 178 (2) K		C42 C43	0.3027 (8)	0.3842 (8) 0.4582 (8)) 0.3801 (8)	0.032 (2)
c = 13.0 V = 242	675 (5) Α 73 8 (11) Å ³		I = 1/0 (2) K Prism		C43 C44	0.3613 (8)	0.4388 (9) 0.3050 (8)	0.035 (3)
Z = 4	/ J.O (11) A		$0.36 \times 0.24 \times 0$).18 mm	C45	0.4370 (9)	0.3690 (8) 0.3037 (8)	0.032 (2)
$D_x = 2.$	377 Mg m ⁻	3	Colourless		C40	0.4408 (8)	0.3000 (8) 0.3813(8)	0.031 (2)
D_m not	measured				Table 4. Selected geometric parameters (Å, °) for (2)				
Data co	ollection				Au1—I	Pl	2.223 (3)	P1—C1	1.893 (10)
Siemen	s R3 diffract	ometer	$R_{int} = 0.0338$		Aul(211	2.297 (3)	P2C31	1.799 (11)
ω scans		$\theta_{\rm max} = 27.56^{\circ}$		Au1—/ Au2—I	4u2 >2	3.1432(8) 2.232(3)	P2C41 P2C1	1.811 (12)	
Absorption correction:		$h = -16 \rightarrow 0$		Au20	212	2.298 (3)	C1—F2	1.345 (11)	
ψ scans (<i>XEMP</i> ; Nicolet,		$k = -17 \rightarrow 17$		P1C2	21	1.805 (11)	C1F1	1.377 (12)	
1987) 0 (10 T		$l = 0 \rightarrow 18$	•	P1	1-C11	176.12 (11)	C31—P2—C41	109.2 (5)
	$= 0.010, I_{\pi}$	_{nax} =	3 standard reflec	tions	P1—A	u1—Au2	81.48 (8)	C31—P2—C1	103.7 (5)
6151 m	easured refle	ections	reflections	ly 147	P2-A	ul—Au2 12—Cl2	101.33 (8) 174.65 (10)	C41 - P2 - C1 C31 - P2 - Au2	105.2 (5)
5693 in	dependent r	eflections	intensity decay	v: 4%	P2-A	12—Au1	92.98 (8)	C41-P2-Au2	112.2 (3)
4560 ot	oserved refle	ctions			Cl2—A	u2—Au1	91.46 (7)	C1-P2-Au2	109.5 (3)
[<i>I</i> >	$2\sigma(I)$				C21—F	21	107.4 (4)	F2C1F1 F2C1P1	111.6 (7)
D					C11—F	P1C1	102.8 (5)	FI-CI-PI	107.2 (6)
Kejinen	<i>ueni</i>			9 z	C11—F	Pl—Aul	118.7 (3)	F2-C1-F2 F1-C1-P2	106.2 (7)
Refinen	nent on F^{*}		$\Delta \rho_{\rm max} = 2.003 {\rm e}$	$\mathbf{A}^{-\mathbf{y}}$	CI-PI	—Aul	107.3 (3)	P1-C1-P2	113.2 (5)
R(F) = 0.0405 (adjacent to Au atoms) $wP(F^2) = 0.0045$		Ear h	ath annual and	a data aall	ation D2 (Nicol	at 1097), asl			
S = 0.9	$\omega_{R}(r) = 0.0945 \qquad \qquad \Delta \rho_{\min} = -1.64/e \text{ A}$		For both compounds, data collection: P3 (Nicolet, 1987); cell						
5693 re	flections		Extinction correct	ction: none	orram(s) used to solve structures: SHELYSR (Sheldrick 1000).				
298 par	rameters		Atomic scatterin	g factors	program(s) used to refine structures: SHELXL93 (Sheldrick,				
H atom	s riding	_	from Internation	onal Tables	1993)	; molecular gr	aphics: XP	Siemens, 1994);	software used
$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2] \qquad for \ Crystallography \ (1992,$		to prepare material for publication: SHELXL93.							
wher	e $P = (F_o^2)$	$+ 2F_c^2)/3$	Vol. C, Tables	4.2.6.8 and					
$(\Delta / \sigma)_{n}$	hax = -0.00	l	0.1.1.4)	re.	Cr	ystals of both	ı compoun	ds were kindly	provided by
ADSOIULE STUCIULE: Flack (1983)		Dr C. Ruhnau and Professor M. Fild of this Institute. We							
Flack parameter =		thank the Fonds der Chemischen Industrie for financial							
-0.006 (12)			support and Mr A. Weinkauf for technical assistance.						

2398

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: FG1184). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Antipin, M. Yu., Struchkov, Yu. T., Pisareva, S. A., Medved, T. Ya. & Kabachnik, M. I. (1980). J. Struct. Chem. 21, 644-649.
- Carroll, P. J. & Titus, D. D. (1977). J. Chem. Soc. Dalton Trans. pp. 824-829.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jones, P. G. (1986). Gold Bull. 19, 46-57, and references therein.
- Jones, P. G. (1996). Acta Cryst. C52, 1793-1795.
- Jones, P. G. & Thöne, C. (1992). Acta Cryst. C48, 1312-1314.
- Nicolet (1987). Manuals for P3 X-ray Program System. Nicolet Analytical X-ray Instruments, Madison, Wisconsin, USA.
- Ruhnau, C. (1992). PhD thesis, Technical University of Braunschweig, Germany.
- Schmidbaur, H. (1990). Gold Bull. 23, 11-21.
- Schmidbaur, H., Reber, G., Schier, A., Wagner, F. E. & Müller, G. (1988). Inorg. Chim. Acta, 147, 143-150.
- Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977). Chem. Ber. 110, 1748–1754.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1991). XDISK. Data Reduction Program. Version 3.11. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments, Madison, USA.

Acta Cryst. (1996). C52, 2399-2402

(*cis*-1,2-Dichlorovinyl)bis(dimethylglyoximato-*N*,*N'*)(pyridine-*N*)cobalt(III) Chloroform Solvate, [Co(dmgH)₂(py)-(CCI=CHCl)].CHCl₃

Peter G. Jones,^a Lin Yang^b and Dirk Steinborn^b

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Anorganische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle, Germany. E-mail: jones@x-ray36.anchem.nat.tu-bs.de

(Received 14 May 1996; accepted 11 June 1996)

Abstract

In the title complex, $[Co(C_2HCl_2)(C_4H_7N_2O_2)_2(C_5H_5-N)]$.CHCl₃, the Co atom exhibits a distorted octahedral coordination with the two dimethylglyoximate (dmgH)

ligands in equatorial positions [Co—N 1.891 (2)– 1.897 (3) Å]. The axial positions are occupied by the pyridine (py) and *cis*-1,2-dichlorovinyl ligands [N— Co—C 179.0 (1)°], which are nearly coplanar. The Co— C1 distance is 1.958 (3) Å. The Co—N_{py} bond length of 2.028 (2) Å indicates a lower *trans* influence for the dichlorovinyl ligand compared with alkyl ligands.

Comment

Organocobaloximes, $[Co(dmgH)_2(L)R]$ (dmgH₂ is dimethylglyoxime, *L* is an axial base and *R* is a σ -organo ligand), are not only model complexes for vitamin B₁₂ coenzymes (Schrauzer, 1976, 1977; Randaccio, Bresciani-Pahor, Zangrando & Marzilli, 1989), but have also been widely used for investigations of the reactivity of σ -Co—C bonds and the *trans* influence of σ -organo ligands (Pattenden, 1988; Sweany, 1995). We report here the molecular structure of the *cis*-1,2-dichlorovinyl (*R* = CCl=CHCl) complex, (1), with pyridine as the axial base *L*.

The crystal structure of (1) consists of discrete molecules of the complex $[Co(dmgH)_2(py)(CCl=CHCl)]$ and chloroform solvate molecules. The Co atom exhibits distorted octahedral coordination, with four oxime Natom donors in equatorial positions. The two dimethylglyoximato ligands are connected by two strong intramolecular hydrogen bonds $[O2\cdots O3 \ 2.501 (4)$ and $O1\cdots O4 \ 2.490 (3)$ Å]. The four Co—N bond distances range from 1.891 (2) to 1.897 (3) Å. These values do not differ significantly from those of other organocobaloximes (Bresciani-Pahor *et al.*, 1985).

The four oxime N atoms are coplanar to within 0.007 Å. The Co atom is displaced by 0.010(1) Å (d) from the mean plane towards the pyridine ligand. The two nearly planar dmgH ligands (r.m.s. deviations of 0.023 and 0.024 Å for the C7–C10, N3, N4, O3, O4 and C3–C6, N1, N2, O1, O2 planes, respectively) subtend an interplanar angle, α , of 1.3(1)°. The values of d and α are smaller than in the vinyl complex [Co(dmgH)₂(py)(CH=CH₂)] [(2); d = 0.04 Å and $\alpha = 6.3^{\circ}$; Bresciani-Pahor, Calligaris & Randaccio, 1980] and in many other organocobaloximes (Bresciani-Pahor *et al.*, 1985; Randaccio *et al.*, 1989).

The N5—Co—C1 unit is linear [N5—Co—C1 179.0 (1)°]. The dichlorovinyl and pyridine ligands are